What Are Construction Thermal Bridges in Buildings?

Do you have a random “cold spot” in your dining room or perhaps in an area where a sweater is always needed, no matter how high the thermostat is set?  Thermal bridges may be at play.

If you don’t work in or around construction, you may have never heard the term “thermal bridging”–but you’ve likely felt its effects. In a nutshell, it’s the movement of heat across an object that is more conductive than the materials around it.

Thermal bridging not only causes a loss of heat within the space, it can also cause the warm air inside to cool down. As we approach the coldest season of the year, this means higher utility costs and potentially uncomfortable shifts in temperature inside your home or building.

Keep reading to find out exactly how thermal bridging works and what you can do to stop it:

What is thermal bridging?

When heat attempts to escape a room, it follows the path of least resistance. Likewise, the same process occurs during the summer, only in reverse, allowing heat to enter your otherwise cool building.

Thermal bridging happens when a more conductive material allows an easy pathway for heat flow–usually where there is a break in (or penetration of) the insulation. Some common locations include:

  • The junctions between the wall and the floor, roof, or doors and windows.
  • The junction between the building and the deck or patio
  • Penetrations in the building envelope to include pipes or cables
  • Wood, steel, or concrete envelope components such as foundations, studs, and joists
  • Recessed lighting
  • Window and door frames
  • Areas with gaps in insulation

Impacts and risks assumed due to thermal bridging

What does all of this mean for you? In addition to poor climate control, there are several other lesser-known (but still serious) effects caused by thermal bridging.

Thermal bridges can increase the risk of condensation on internal surfaces, and also cause condensation within the walls.  Both can lead to mold growth, which in turn can cause unpleasant odors, poor air quality, and most importantly long-term health problems. Additionally, unchecked condensation may eventually cause rot and structural damage.

Thermal Bridging in windows

Thermal bridging can have a significant effect on the energy efficiency of windows. The frames and spacers are the primary culprits.  Spacers are the, typically metal, “strip” that goes between and separates the glass on double and triple pane windows.  Different materials have different conductivity and impact the performance of the windows differently.  Condensation on a double pane window is generally due to the spacers.

With retrofit situations, knowing exactly how old a window is, as well as the component materials, can provide you with a general idea of its efficacy. Unfortunately, if your windows are rather dated or just poorly made, it is nearly impossible to add thermal breaks into an existing framing system.

Issues with roofs and foundations

By their very nature, roofs and foundations present a large number of challenges in terms of maintaining a thermal boundary. Drains, vents, and holes for pipes and wires (amongst other things) create unavoidable penetrations in the building envelope and insulation. Heat transfers from the building into the ground or from the building into the air are often inevitable, though they can be minimized.

Strategies and methods to reduce thermal bridges in buildings

Bottom line? In new construction, design it right which a whole topic in itself. With existing homes, if you suspect there is thermal bridging occurring in your space, you need to eliminate or reduce the effects as much as possible.

Proper planning, design, and construction can help remedy thermal bridges in new structures. However, if you live in an older home, there are still steps you could take. These strategies include:

  • Performing an energy audit to identify thermal bridges in your home
  • Installing double or triple pane windows with argon or krypton gas, better spacers and insulated frames
  • Updating and/or adding insulation to your home – ideally adding a continuous insulation layer.
  • Installing storm doors (especially if you have metal doors)
  • The ultimate remedy is to complete a deep energy retrofit that addresses everything and more than mentioned in this blog

Studies show that in an otherwise airtight and insulated home, thermal bridges can account for a heat loss of up to 30%. Whether you’re building a new home or retrofitting an existing structure, care should be taken to avoid unnecessary breaks or penetrations so that the possibility of thermal bridging decreases.

If you’re looking for ways to minimize thermal bridges in your next project or existing home, contact us today.

SIGA Majrex: A Skin Like the Cactus

What can we learn from the cactus related to building science? The cactus “skin” has essentially two perm ratings. The cactus absorbs vapor through its skin at night, and in the daytime when temperatures rise, that same skin prevents the moisture from escaping. The skin of the cactus allows moisture to migrate inward, but not outward.
SIGA has learned the answer to keeping walls dry by incorporating the unique characteristic of the skin of the cactus to collect and store water. In our buildings, we want the opposite to happen — prevent moisture from getting into our walls and allow it to migrate out. SIGA’s new product Majrex does just that.

While a cactus needs water to survive, our walls do not. In fact, moisture in our walls has the opposite impact — effectively “killing” our walls instead of nurturing them. So, the goal is the reverse of the cactus.
Humidity/moisture is higher inside our buildings due to such activities as cooking, showering and many other sources, even breathing. That moisture gets into our walls through a couple mechanisms, including air infiltration. With air infiltration, air and the moisture it carries travels from the interior of the building into the walls. That moisture within the air then condenses on cold surfaces in the interior of the walls — like a “sweaty” glass of ice water on a humid summer day. While it is best to keep the air out of our walls in the first place, some air will get in regardless carrying moisture with it.

At the point we have condensation in our walls, we absolutely need that moisture to dry or migrate out of the walls. Moisture in our walls causes mold, mildew and dry rot. In a typical home, if we were to add up all the cracks in the walls, corners and around the windows and doors, we have a hole equal to a 3-foot by 3-foot window open 24 hours every day of the year. Not only does this make us cold, but it also empties our pockets. Most importantly, it enables moisture to get into our walls with air as its transport mechanism.

SIGA patented its unique, one directional moisture transport and named it Hygrobrid technology. With this technology, SIGA developed Majrex, a “smart” interior membrane. Majrex has two different perm ratings. The perm rating from interior of the building to the interior of the walls is less than 0.097. In the other direction, from the interior of the wall to the interior of the building, the perm rating is greater than or equal to 4.25. Unlike other “smart” membranes that react to humidity and become more permeable to moisture, Majrex is essentially vapor open one way and nearly vapor closed the other. Combined with the SIGA Majvest air and weather barrier on the exterior with its 68-perm rating, we can effectively keep air and moisture out of our walls and effectively enable our walls to dry to the interior or to the exterior.

 

Majrex offers the benefits of:
1. Making our walls airtight so air and moisture cannot get in.
2. Making sure walls are vapor open, enabling moisture to migrate out of the walls.

Unfortunately, we often hear from building practitioners that walls need to breathe, and there is a very important distinction we would like to make. We do not want air going into our walls, because that very air is the culprit which brings moisture into our walls. We do not want them to “breathe.” Instead, we want them to be vapor open.

Simply put, Majrex is a directional membrane which allows moisture out of our walls and prevents it from coming in. Thanks to the cactus, SIGA has learned the secret to keeping our walls dry.

For more information or to order SIGA Majrex, call us at 720.287.4290

Source: sigacover.com